Higher moments of Banach space valued random variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Moments of Banach Space Valued Random Variables

We define the k:th moment of a Banach space valued random variable as the expectation of its k:th tensor power; thus the moment (if it exists) is an element of a tensor power of the original Banach space. We study both the projective and injective tensor products, and their relation. Moreover, in order to be general and flexible, we study three different types of expectations: Bochner integrals...

متن کامل

Central Limit Theorem for Banach Space Valued Fuzzy Random Variables

In this paper we prove a central limit theorem for Borel measurable nonseparably valued random elements in the case of Banach space valued fuzzy random variables.

متن کامل

Weak laws of large numbers for weighted sums of Banach space valued fuzzy random variables

In this paper, we present some results on weak laws of large numbers for weighted sums of fuzzy random variables taking values in the space of normal and upper-semicontinuous fuzzy sets with compact support in a separable real Banach space. First, we give weak laws of large numbers for weighted sums of strong-compactly uniformly integrable fuzzy random variables. Then, we consider the case that...

متن کامل

Moderate Deviation Principles for Trajectories of Sums of Independent Banach Space Valued Random Variables

Let {Xn} be a sequence of i.i.d. random vectors with values in a separable Banach space. Moderate deviation principles for trajectories of sums of {Xn} are proved, which generalize related results of Borovkov and Mogulskii (1980) and Deshayes and Picard (1979). As an application, functional laws of the iterated logarithm are given. The paper also contains concluding remarks, with examples, on e...

متن کامل

Asymptotic Expansions for the Laplace Approximations of Sums of Banach Space-valued Random Variables

Let Xi, i ∈ N, be i.i.d. B-valued random variables, where B is a real separable Banach space. Let Φ be a smooth enough mapping from B intoR. An asymptotic evaluation of Zn = E(exp(nΦ( ∑n i=1 Xi/n))), up to a factor (1 + o(1)), has been gotten in Bolthausen [Probab. Theory Related Fields 72 (1986) 305–318] and Kusuoka and Liang [Probab. Theory Related Fields 116 (2000) 221–238]. In this paper, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Memoirs of the American Mathematical Society

سال: 2015

ISSN: 0065-9266,1947-6221

DOI: 10.1090/memo/1127